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Interfacial transfer in Tryggvason’s method
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SUMMARY

Tryggvason’s method computes two phase �ows by smoothing the regions near the boundaries between
the two �uids. This requires averaging of the �uid properties, which may di�er by orders of magnitude
and can lead to large errors. Traditional linear averaging produces a �rst order error that can be extremely
large. In this paper, we show that for a number of simple test cases, averaging of the inverses of the
properties can lead to a signi�cant improvement in the quality of the results. Copyright ? 2003 John
Wiley & Sons, Ltd.

1. INTRODUCTION

Numerical methods for simulating two-phase �ows have received increased attention in recent
years. Methods that have been proposed can be broken into two major categories. In the �rst
group are methods that advance the Navier–Stokes equations as if the two phases comprise
a single �uid. In the second type of method, the two phases are treated separately and the
phase boundary is explicitly taken into account. These may be called front capturing and front
tracking methods, respectively.
Among the front tracking methods are the Chimera method developed by Dwyer and others

(for example, Reference [1]) and the moving �nite element method proposed by Helenbrook
among others (for example, Reference [2]). Chimera methods use a body �tted grid overlaid
on a coarser outer grid and the solution is obtained by iterating between the two grids and
passing information between them. The major problem in this approach is that it is di�cult
(but not impossible) to take deformation of the phase boundary into account. The �nite
element method has the potential to handle a wider range of problems but is likely to be
more expensive computationally.
The principal types of front capturing methods are the volume of �uid methods that have

been worked on by many people (Reference [3] and others). In these methods, each cell
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carries a parameter that represents the fraction of a cell �lled with one of the �uids. The
major disadvantage in this approach is that the interface needs to be reconstructed after each
time step and this is di�cult to do accurately.
Tryggvason’s method [4, 5] also treats the entire system as a single �uid, advancing the

solution at all grid points simultaneously, but avoids use of an auxiliary variable. Numerical
oscillations are suppressed by smoothing all of the �uid properties over several computational
cells in the direction normal to the interface. To prevent it from being smoothed excessively
by di�usion, the interface is explicitly tracked. Use of a level set method has been suggested
as an alternative to tracking. As is true of many methods that deal with sharp interfaces, this
method is only �rst order accurate in the region of the interface. Decreased accuracy near the
interface is deemed acceptable (if not necessary) when compressible �ows containing shocks
are simulated. However, in two-phase �ows, the rate of exchange of important physical proper-
ties such as momentum, energy, and species between the phases is often one of the signi�cant
quantities to be computed and it is predicted to only �rst order accuracy by Tryggvason’s
method.
In this note we will �rst give a demonstration that the method is �rst order accurate in

the exchanged properties. For steady one-dimensional heat conduction (or its mathematical
equivalent, two-layer Couette �ow) it is possible to modify the method so that the computed
heat (momentum) �ux is exact even though the temperature (velocity) �eld is not. We shall
show that the accuracy is also improved when the new procedure is applied to the unsteady
heat equation and strati�ed unsteady Couette �ow.

2. STEADY ONE-DIMENSIONAL HEAT CONDUCTION

2.1. Dependence of the heat �ux on the averaging procedure

To begin, let us consider a simple problem, steady heat conduction in a two-layer medium. It
is not much more di�cult (and is more useful) to consider the heat equation with arbitrarily
variable thermal conductivity:

d
dx

(
k(x)

dT
dx

)
=0 (1)

This equation is to be solved together with the boundary conditions:

T (0)=T0; T (L)=T1 (2)

In the two layer case:

k=

{
k1 x¡L=2

k2 x¿L=2
(3)

The reason for using a heat transfer setting rather than the apparently more relevant �uid
mechanical one will become obvious below.
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The problem posed by Equations (1) and (2) is easily solved in closed form for any
distribution of k. In fact, the non-dimensional temperature distribution is:

T − T0
T1 − T0 =

∫ x
0 dx=k(x)∫ L
0 dx=k(x)

(4)

while the heat �ux (which is independent of x) is:

q=
T1 − T0∫ L
0 dx=k(x)

(5)

These results are easily specialized to the case of a two-layer medium.
The largest error in Tryggvason’s method for this problem is not due to the method used

to discretize the equations. The essential element of the method, whose e�ect needs to be
investigated, is the replacement of the exact thermal conductivity k by a smoothed one. The
smoothing can be represented by a �ltering operation:

�k(x)=
∫
G(|x − x′|)k(x′) dx′ (6)

Typically, one might use a simple volume average which corresponds to G(x)=1 for |x|¡L
and G(x)=0 for |x|¿L.
This smoothing is the principal source of error. The e�ect of smoothing the conductivity on

the temperature �eld was analysed by Tryggvason himself. The analysis is relatively straight-
forward. One assumes that the di�erence between k and �k and the resulting change in the
temperature pro�le are both small i.e.

�k= k + �k; �T =T + �T (7)

and ignores second order terms. When Equation (7) is substituted into the heat equation (1),
the result is easily solved for the perturbation to the temperature. This is not di�cult to do
but we are more interested in the change in the heat �ux; it is not di�cult to show that:

�q=

∫ L
0

�k(x)
k(x) dT=dx dx∫ L
0 dx=k(x)

(8)

The denominator of this expression is constant and, for the two layer case, the functions
dT=dx and k in the numerator are both piecewise constant. If k1¡k2, then �k is positive
for x¡0 and �k(x)= − �k(−x). Using this observation, it is not di�cult to show that �q
is proportional to the size of the region over which k is smoothed. Since, in Tryggvason’s
method, this is a �xed number of grid sizes, we see that the error is proportional to the grid
size i.e. the heat �ux is computed with �rst order accuracy.
To perform calculations with the method, we used a conservative second order central

�nite volume method in which the temperature is given at the grid points and the thermal
conductivity is given midway between the grid points [6]; a temperature node is located at
the interface but we shall discuss the issue further below. The smoothing is accomplished by
averaging the thermal conductivity over �ve points with a weighting of 1=8, 1=4, 1=4, 1=4,
and 1=8. These calculations (and all subsequent ones) were run on an SGI workstation using
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Table I. Steady one-dimensional heat �ux.

Grid size Heat �ux Error=qexh

0.1 2.0486 −1:2693
0.05 1.9265 −1:1918
0.025 1.8708 −1:1573
0.01 1.8389 −1:1375
0.005 1.8285 −1:1311
0.0025 1.8233 −1:1279
0.001 1.8202 −1:1260

Matlab. For the case shown in the table, we took k1 = 1, k2 = 10, and L=2. For this case, the
exact heat �ux is 1.8182. Table I presents both the heat �ux and the relative error divided
by the grid size. As expected, the results show that the method is �rst order accurate and that
the errors are quite large for moderate grid sizes.
A way to improve the accuracy to which the heat �ux is computed can be based on a

method presented in many elementary heat transfer textbooks. Indeed, the method has been
known for a su�ciently long time that it is not clear to whom it should be attributed. This
approach can also be found by inspection of Equation (5). The idea is that the heat �ux will
be exact if 1=k is averaged rather than k. In other words, the resistance, not the conductance,
must be averaged; this leads to the well-known analogy between conductive heat transfer and
resistive electrical circuits and is the reason why the problem was cast in heat transfer terms.
In fact, if we repeat the calculation done above and average 1=k rather than k, the heat �ux
is computed exactly with any grid size. The temperature pro�le is, of course, not computed
exactly. Indeed, the error in the temperature distribution remains �rst order in the grid size
but the actual error, at least for this problem, is reduced by about an order of magnitude. The
temperature pro�les are shown in Figure 1.
The �gure also shows that the error created by averaging k is largely a shift of the solution

curve into the region of lower thermal conductivity. This can be attributed to the fact that
this method of averaging produces a larger k in the part of this region close to the boundary.
We should also mention that Tryggvason [7] himself recognized that averaging 1=k rather

than k should produced improved results but did not use the procedure recommended here in
place of his method.

2.2. Another view of the problem

We can repeat the analysis of the preceding section in a way that will be useful later. In
problems whose solutions have discontinuities, for example problems with shocks or reaction
fronts, it is necessary to smooth or �lter the solution in order to render it resolvable on the
numerical grid. This may be accomplished by adding a di�usive (dissipative) term to the
di�erential equation or by using a dissipative numerical method. A related technique is used
in turbulent �ows. Because it is impossible to capture the smallest scales, they are �ltered out
and a model (which often takes the form of an increased or eddy viscosity) is added to the
equations. In the present case, it is only the derivative of the solution that has a discontinuity
so the issue is somewhat simpler.
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Figure 1. The temperature pro�le produced by Tryggvason’s method with averaging of k and 1=k
compared with the exact solution. The solid line is the exact solution, the dashed line was obtained by
averaging k, and the dash-dot line is the solution obtained by averaging 1=k. The method described in the

text was used in each case with grid size, h=0:05.

Let us �lter Equation (1). Since a �lter of the form (6) commutes with di�erentiation, the
result is

d
dx

(
k
dT
dx

)
=0 (9)

Our objective is to select �k so that

�k
d �T
dx
= k;

dT
dx

(10)

In the present case, this is easily accomplished. Because k dT=dx=−q, the heat �ux which
is constant, we can write:

�k=− q
d �T=dx

=
q
q1=k

=
1
1=k

(11)

This is, of course, the result we found earlier.
The interpretation of this result is that, if the thermal conductivity (11) is used, the solution

(in the absence of numerical errors) should be the �ltered temperature �eld

�T =
∫
G(|x − x′|)T (x′) dx′ (12)

Since the width of the �lter need not be related to the grid size, this is the temperature
pro�le to which an accurate numerical solution will converge. This view shows that there
are two sources of di�erence between the exact solution of the di�erential equation and
the numerical solution: �ltering and numerical error. The �ltered temperature distribution is
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computed exactly (to machine accuracy) by the method described above, as it should be
because �kd �T=dx is constant.
In a more realistic problem, it would not be possible to place a grid point at the interface.

If we use the method described above, this means that the interface cannot be localized to
within less than a grid size and there is therefore an error of this order of magnitude in the
resulting temperature pro�le. The heat �ux remains exact, however.
In the calculations shown in the �gure, the boundary between the two regions was placed

on a grid point. When we repeated the calculations with the boundary half way between two
grid points, nearly identical results were found.

3. UNSTEADY HEAT CONDUCTION

As the next example, let us consider the case of unsteady one-dimensional heat conduction
with constant heat capacity and density:

@T
@t
=
@
@x

(
�
@T
@x

)
(13)

where �= k=�cp is the thermal di�usivity. This problem can also be interpreted as two-
layer constant density Couette �ow. For the initial temperature distribution, we take the step
function:

T (x; 0)=
{−1 x¡0
1 x¿0 (14)

This problem has an exact solution that is an error function on each side of the discontinuity.
The solution is continuous everywhere, including at the property discontinuity, but its deriva-
tive is not. (The heat �ux q= − k dT=dx is continuous everywhere including at x=0 but is
not constant in either space or time.)
In order to avoid the numerical problems associated with the discontinuity of �, we shall

start the numerical solution with the exact solution at t=0:2 and run until t=0:4. We use
�1 = 1 and �2 = 0:1. The exact heat �ux at the �nal time is 0.5916.
It is again possible to use the perturbation method to show that the method based on

averaging k is �rst order accurate in its prediction of the temperature.
If we �lter Equation (13), the result can be written:

@ �T
@t
=
@
@x

(
��
@ �T
@x

)
(15)

where �� is de�ned in analogy with �k of Equation (10). The important di�erence between this
case and the preceding one is that, because the heat �ux is not independent of either x and
t, it is not possible to reduce this expression to the simple average in Equation (11).
Thus, to �nd �T it would be necessary to re-evaluate �� at each time step using the instan-

taneous temperature pro�le, which would add a great deal of expense to the procedure. To
avoid the necessity of doing this we shall use the averages that were applied in the preceding
problem.
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Figure 2. The average thermal di�usivity produced by simple averaging of 1=k
(solid line) and k (dashed line) and by averaging with the exact temperature

distributions at t=0:2 and 0:4 (dash-dot lines).

We can get an idea of the e�ect of averaging by computing �� using the exact temperature
distribution. Figure 2 shows the distribution of �� produced by simple averaging of 1=� and �
and by computing the average with the exact temperature pro�le for a grid size of 0.125. It
is clear that averaging the inverse of � produces a better approximation to the actual average.
We repeated this process at other times and with di�erent grid sizes and found similar results
in all cases.
For numerical solution of the problem, we used a slight extension of the method employed

in the preceding section. The thermal conductivity (or its inverse) is smoothed in the way it
was in the preceding case and the spatial derivative is discretized in the manner described
earlier. The temperature pro�le is advanced in time using the Crank–Nicolson (trapezoid)
method with a time step �t=0:125h2=�max where h is the spatial grid size. This assures that
the error due to the time advancement is smaller than that due to the spatial di�erencing.
In this case, there are three sets of results that may be compared. The �rst is the exact heat

�ux at the interface which is, of course, independent of the computational parameters. The
second is the exact heat �ux obtained with the �ltered conductivity; it can also be obtained
by �ltering the exact heat �ux. Finally, there is the numerical solution which, if discretization
errors were removed, would agree with the second value.
The results obtained when the thermal di�usivity, �, is averaged are presented in Table II.

We see that the error is quite large and is approximately proportional to the grid size i.e. the
method appears to be �rst order accurate, as expected.
When we average 1=� rather than �, we obtain the results shown in Table III. The errors

are much smaller than those obtained by averaging �. However, there is a change in the sign
of the error between the last two grid sizes so it is not possible to say that the method has
a de�nite order. However, the error appears to decrease in magnitude at least as fast as the
square of the grid size.
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Table II. Unsteady one-dimensional heat �ux with � averaged.

Grid size Heat �ux Error=qexh

0.25 0.8186 −1:5353
0.125 0.7366 −1:9652
0.0625 0.6424 −1:3747

Table III. Unsteady one-dimensional heat �ux with 1=� averaged.

Grid size Heat �ux Error=qex

0.25 0.4695 0.8257
0.125 0.5673 0.3247
0.0625 0.5945 −0.0796

4. UNSTEADY COUETTE FLOW

As the �nal example we consider a problem that is a slight mathematical variation on the
preceding problem. This is strati�ed Couette �ow, for which the di�erential equation is

�
@u
@t
=
@
@x

(
�
@u
@x

)
(16)

with both the viscosity � and the density � having two-layer behaviour. The initial velocity
distribution, is again a step function:

u(x; 0)=

{−1 x¡0

1 x¿0
(17)

The solution is started with the exact solution at t=0:01. We have chosen properties that
approximate those of the water–water-vapour system:

�(x; 0)=

{
1 x¡0

100 x¿0
�(x; 0)=

{
1 x¡0

1000 x¿0
(18)

For this case, the exact shear stress is �=2:4546.
The only signi�cant di�erence between this problem and the preceding one is the density

variation. Since we are now certain that the inverse of the di�usive property (viscosity) should
be averaged, the important question is whether to average the density itself or its inverse. We
shall do this problem both ways.
Although we can be quite certain that averaging the properties themselves will not give

good results, we tried that approach. The errors were very large; on the �nest grid the shear
stress at the boundary was 3.23 vs the exact value of approximately 2.45 given above. On
coarser grids, the results were much worse. When one looks at the pro�les, it is found that
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Table IV. Unsteady one-dimensional shear stress with 1=� averaged.

Grid size Shear stress Error=�exh

0.25 2.5117 −0:0932
0.125 2.5118 −0:1903
0.0625 2.4693 −0:0959

Table V. Unsteady one-dimensional shear stress with � averaged.

Grid size Heat �ux Error=�exh

0.25 5.5275 −5:08
0.125 6.4480 −13:03
0.0625 4.8402 −15:55

the reason for such large errors is that the pro�le is shifted to the left relative to the correct
one just as was the case for the one-dimensional steady conduction problem.
The results obtained when both the inverses of the density and viscosity are averaged are

shown in Table IV. We see that the quality of the results is approximately the same as those
found in the preceding two cases. The error appears to decrease more rapidly than the grid
size (at least for the �nest grids used) but it is di�cult to say anything about the order of
the method.
When the density and the inverse of the viscosity are averaged, we obtain the results

presented in Table V. They are obviously not of the quality obtained when the inverses of
both properties are averaged. We conclude that the best procedure is to average the inverses
of both the density and the viscosity. We believe that this result should apply to the Navier–
Stokes equations as well.
An argument for favouring inverse averaging is that the acceleration is inversely proportional

to the density and, to predict it correctly, it is necessary to use the correct average of the
inverse density.
Another question is whether one should advance the velocity in time by treating the density

as a coe�cient or advance the momentum (�u) in time. That question cannot be answered
by using the test problem used in this paper because � is independent of time but experience
with other problems suggests that one should update the conserved variable i.e. momentum.

5. SUMMARY AND DISCUSSION

We have shown that the use of averages of inverse properties rather than the properties
themselves greatly reduces the error in the computed �uxes of important quantities at the
interface between two phases. Use of these averages in Tryggvason’s method is thus likely
to bring a signi�cant increase in the accuracy of these �uxes and in the overall quality of the
results.
An issue that has not been considered in this paper is that of the e�ect of curvature of

the interface. Interfaces in real two phase �ows of the kind computed by Tryggvason and
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his colleagues are, of course, strongly curved. We expect that, as long as the curvature of
the surfaces is small relative to the inverse of the grid size, which is required for numerical
accuracy, the e�ect of curvature should be limited.
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